Exponential Moving Average Der Exponential Moving Average Der Exponential Moving Average unterscheidet sich von einem Simple Moving Average sowohl nach Berechnungsmethode als auch in der gewichteten Preislage. Der Exponential Moving Average (verkürzt auf die Initialen EMA) ist effektiv ein gewichteter gleitender Durchschnitt. Mit der EMA ist die Gewichtung so, dass die letzten Tage Preise mehr Gewicht als ältere Preise gegeben werden. Die Theorie dahinter ist, dass jüngere Preise als wichtiger als ältere Preise angesehen werden, zumal ein langfristiger einfacher Durchschnitt (zum Beispiel ein 200-tägiger Tag) gleiches Gewicht auf Preisdaten hat, die über 6 Monate alt sind und gedacht werden könnten Von so wenig veraltet. Die Berechnung der EMA ist ein wenig komplexer als die Simple Moving Average, hat aber den Vorteil, dass eine große Aufzeichnung von Daten, die jeden Schlusskurs der letzten 200 Tage abdeckt (oder aber viele Tage betrachtet werden) nicht beibehalten werden muss . Alles was Sie brauchen sind die EMA für den Vortag und den heutigen Schlusskurs, um den neuen Exponential Moving Average zu berechnen. Berechnen des Exponenten Anfänglich muss für die EMA ein Exponent berechnet werden. Um zu beginnen, nehmen Sie die Anzahl der Tage EMA, die Sie berechnen möchten und fügen Sie eine auf die Anzahl der Tage, die Sie in Erwägung ziehen (zum Beispiel für einen 200-Tage gleitenden Durchschnitt, fügen Sie einen zu 201 als Teil der Berechnung zu erhalten). Nennen Sie diese Tage1. Dann, um den Exponenten zu erhalten, nehmen Sie einfach die Zahl 2 und teilen sie durch Days1. Zum Beispiel wäre der Exponent für einen 200 Tage gleitenden Durchschnitt: 2 201. Das entspricht 0,01 Vollberechnung, wenn der exponentielle gleitende Durchschnitt Nachdem wir den Exponenten erhalten haben, brauchen wir nur noch zwei weitere Informationen, um die vollständige Berechnung durchführen zu können . Die erste ist gestern Exponential Moving Average. Wir gehen davon aus, dass wir das schon wissen, wie wir es gestern berechnet haben. Allerdings, wenn Sie arent bereits Kenntnis von gestern EMA, können Sie durch die Berechnung der Simple Moving Average für gestern starten, und verwenden Sie diese anstelle der EMA für die erste Berechnung (dh heute Berechnung) der EMA. Dann können Sie morgen die EMA verwenden, die Sie heute berechnet haben, und so weiter. Die zweite Information, die wir brauchen, ist der heutige Schlusskurs. Wir gehen davon aus, dass wir den heutigen 200 Tage Exponential Moving Average für eine Aktie oder Aktie berechnen wollen, die eine vorhergehende EMA von 120 Pence (oder Cent) und einen aktuellen Tages-Schlusskurs von 136 Pence hat. Die vollständige Berechnung ist immer wie folgt: Heutige Exponential Moving Average (aktuelle Tage Schlusskurs x Exponent) (vorherige Tage EMA x (1- Exponent)) Also, mit unserem Beispiel Zahlen oben, heute 200 Tage EMA wäre: (136 x 0,01 ) (120 x (1- 0,01)) Das entspricht einer EMA für heute von 120.16.Smoothing Daten entfernt zufällige Variation und zeigt Trends und zyklische Komponenten Inhärent in der Sammlung von Daten im Laufe der Zeit genommen ist eine Form der zufälligen Variation. Es gibt Methoden zur Verringerung der Annullierung der Wirkung aufgrund zufälliger Variation. Eine häufig verwendete Technik in der Industrie ist Glättung. Diese Technik zeigt, wenn sie richtig angewendet wird, deutlicher den zugrunde liegenden Trend, saisonale und zyklische Komponenten. Es gibt zwei verschiedene Gruppen von Glättungsmethoden Mittelungsmethoden Exponentielle Glättungsmethoden Mittelwertbildung ist der einfachste Weg, um Daten zu glätten Wir werden zunächst einige Mittelungsmethoden untersuchen, z. B. den einfachen Mittelwert aller vergangenen Daten. Ein Manager eines Lagers möchte wissen, wie viel ein typischer Lieferant in 1000-Dollar-Einheiten liefert. Heshe nimmt eine Stichprobe von 12 Lieferanten, die zufällig die folgenden Ergebnisse erhalten: Der berechnete Mittelwert oder Mittelwert der Daten 10. Der Manager entscheidet, diese als Schätzung der Ausgaben eines typischen Lieferanten zu verwenden. Ist dies eine gute oder schlechte Schätzung Mittel quadratischen Fehler ist ein Weg, um zu beurteilen, wie gut ein Modell ist Wir berechnen die mittlere quadratische Fehler. Der Fehler true Betrag verbraucht minus die geschätzte Menge. Der Fehler quadriert ist der Fehler oben, quadriert. Die SSE ist die Summe der quadratischen Fehler. Die MSE ist der Mittelwert der quadratischen Fehler. MSE Ergebnisse zum Beispiel Die Ergebnisse sind: Fehler und quadratische Fehler Die Schätzung 10 Die Frage stellt sich: Können wir das Mittel verwenden, um Einkommen zu prognostizieren, wenn wir einen Trend vermuten Ein Blick auf die Grafik unten zeigt deutlich, dass wir dies nicht tun sollten. Durchschnittliche Gewichtungen alle früheren Beobachtungen gleich In Zusammenfassung, wir sagen, dass die einfache Mittelwert oder Mittelwert aller früheren Beobachtungen ist nur eine nützliche Schätzung für die Prognose, wenn es keine Trends. Wenn es Trends, verwenden Sie verschiedene Schätzungen, die den Trend berücksichtigen. Der Durchschnitt wiegt alle früheren Beobachtungen gleichermaßen. Zum Beispiel ist der Durchschnitt der Werte 3, 4, 5 4. Wir wissen natürlich, dass ein Durchschnitt berechnet wird, indem alle Werte addiert werden und die Summe durch die Anzahl der Werte dividiert wird. Ein anderer Weg, den Durchschnitt zu berechnen, besteht darin, daß jeder Wert durch die Anzahl von Werten geteilt wird, oder 33 43 53 1 1.3333 1.6667 4. Der Multiplikator 13 wird als Gewicht bezeichnet. Allgemein: bar frac sum links (frac rechts) x1 links (frac rechts) x2,. ,, Links (frac rechts) xn. Die (links (frac rechts)) sind die Gewichte und summieren sich natürlich auf 1.
No comments:
Post a Comment